This paper describes a component-based modeling approach for diagnosing continuous-valued systems. Our approach allows a user to build diagnostic models for complex continuous-valued systems based on a Library of component models. Continuous-valued systems are modeled, and then dynamically transformed into discrete-valued models (in the form of causal networks), and diagnoses are generated using the causal network model-based diagnostic technology. The primary novel contributions of this work are (1) applying sophisticated and powerful model-based diagnostic techniques to hybrid systems, and (2) employing dynamic techniques for mapping hybrid models into the discrete models necessary for model-based diagnostic inference.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Software toolkit for aerospace systems diagnostics


    Beteiligte:
    Provan, G. (Autor:in) / Elsley, D. (Autor:in)


    Erscheinungsdatum :

    01.01.2000


    Format / Umfang :

    1094971 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Software Tool kit for Aerospace Systems Diagnostics

    Provan, G. / Elsey, D. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2000


    The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

    Hale, M. A. / Mavris, D. N. / Carter, D. L. et al. | British Library Conference Proceedings | 1999


    Automated diagnostics for aerospace power management systems

    Granieri, M.N. / Darty, M. | Tema Archiv | 1995


    The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

    Carter, Dennis L. / Mavris, Dimitri N. / Hale, Mark A. | SAE Technical Papers | 1999


    An Intelligent Toolkit for Benchmarking Data-Driven Aerospace Prognostics

    Rengasamy, Divish / Mase, Jimiama M / Rothwell, Benjamin et al. | IEEE | 2019