Deep learning techniques have been widely applied to traffic flow prediction, considering underlying routine patterns, and multiple context factors (e.g., time and weather). However, the complex spatio-temporal dependencies between inherent traffic patterns and multiple disturbances have not been fully addressed. In this paper, we propose a two-phase end-to-end deep learning framework, namely DeepSTD to uncover the spatio-temporal disturbances (STD) to predict the citywide traffic flow. In the STD Modeling phase, we propose an STD modeling method to model both the different regional disturbances caused by various region functions and the spatio-temporal propagating effects. In the Prediction phase, we eliminate the STD from the historical traffic flow to enhance the leaning of inherent traffic patterns and combine the STD at the prediction time interval to consider the future disturbances. The experimental results on two real-world datasets demonstrate that DeepSTD outperforms the state-of-the-art methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    DeepSTD: Mining Spatio-Temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction


    Beteiligte:
    Zheng, Chuanpan (Autor:in) / Fan, Xiaoliang (Autor:in) / Wen, Chenglu (Autor:in) / Chen, Longbiao (Autor:in) / Wang, Cheng (Autor:in) / Li, Jonathan (Autor:in)


    Erscheinungsdatum :

    01.09.2020


    Format / Umfang :

    4736964 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic speed prediction using a deep neural network to accommodate citywide spatio-temporal correlations

    LEE YONG JIN / SOHN KEE MIN | Europäisches Patentamt | 2020

    Freier Zugriff



    Method for traffic flow prediction based on spatio-temporal correlation mining

    SHI SHIXIONG / YANG SU | Europäisches Patentamt | 2017

    Freier Zugriff

    METHOD FOR TRAFFIC FLOW PREDICTION BASED ON SPATIO-TEMPORAL CORRELATION MINING

    SHI SHIXIONG / YANG SU | Europäisches Patentamt | 2016

    Freier Zugriff