This paper presents a new general proof that the roots of the polynomial corresponding to the minimum variance filter computed using the true Toeplitz covariance matrix must fall on the unit circle (UC). Unlike a previous proof applicable to the Minimum Variance Distortionless Response (MVDR) case only, the new proof does not rely on Wiener-Khinchin theorem to map the problem into frequency domain. Furthermore, the proof is applicable to a general class of sensor array signal processing problems beyond MVDR. Next, new closed-form solutions of UC roots constrained (UCRC) MVDR beamformer and Adaptive Matched Filter (AMF) will demonstrate significant performance improvement than the conventional, non-UC counterparts. The proposed approach will also be shown to achieve superior performance improvement at smaller aperture sizes than the conventional approaches, justifying its suitability for applications with reduced SWAP requirements.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Unit Circle Roots Property for Sensor Array Signal Processing


    Beteiligte:
    Smith, Jared (Autor:in) / Shaw, Arnab (Autor:in)


    Erscheinungsdatum :

    16.08.2021


    Format / Umfang :

    2568442 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Passive inductive proximity sensor array signal processing circuit

    HOEKSTRA ERIC J | Europäisches Patentamt | 2023

    Freier Zugriff


    PASSIVE INDUCTIVE PROXIMITY SENSOR ARRAY SIGNAL PROCESSING CIRCUIT

    HOEKSTRA ERIC J | Europäisches Patentamt | 2023

    Freier Zugriff

    Photonic Signal Processing for Phased Array Sensor Systems

    IEEE; Lasers and Electro-Optics Society | British Library Conference Proceedings | 1998


    Unit Circle Elliptic Beta Integrals

    Diejen, J. F. / Spiridonov, V. P. | British Library Online Contents | 2005