Directing against the poor performance of motor bearing fault diagnosis, a fault diagnosis method of motor bearing based on Gaussian filter denoising, Hilbert transform envelope extraction, and Convolutional Neural Network is proposed. Gaussian filtering and Hilbert transform envelope extraction are used to preprocess the original data. The feature calculation of time-domain, frequency-domain, and wavelet singular entropy is carried out, and then standardized processing is carried out. Finally, Convolutional Neural Network is used for classification. The Convolutional Neural Network model is experimentally verified using the data set of the Case Western Reserve University Bearing Data Center. The experimental results can testify that the algorithm can achieve an accuracy of 98% for an 8-type motor fault diagnosis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Motor Bearing Fault Diagnosis Method Based on Signal Analysis and Convolutional Neural Network


    Beteiligte:
    Lin, Anji (Autor:in) / Run, Yuxuan (Autor:in) / Zhao, Wang (Autor:in)


    Erscheinungsdatum :

    12.10.2022


    Format / Umfang :

    1432166 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    A fault diagnosis method based on improved parallel convolutional neural network for rolling bearing

    Xu, Tao / Lv, Huan / Lin, Shoujin et al. | SAGE Publications | 2023


    Elevator fault diagnosis method based on convolutional neural network

    ZHANG YUEHONG / YUAN ZHAOCHENG / CHEN FANG et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Fault Diagnosis of High-Speed Railway Track Grinding Motor Using Convolutional Neural Network

    Zhou, Qicai / Zhong, Xiaoyong / Xiong, Xiaolei et al. | IEEE | 2024