Identifying interactions of vehicles on the road is important for accident analysis and driving behavior assessment. Our interactions include those with passing/passed, cut-in, crossing, frontal, on-coming, parallel driving vehicles, and ego-vehicle actions to change lane, stop, turn, and speeding. We use visual motion recorded in driving video taken by a dashboard camera to identify such interaction. Motion profiles from videos are filtered at critical positions, which reduces the complexity from object detection, depth sensing, target tracking, and motion estimation. The results are obtained efficiently, and the accuracy is also acceptable. The results can be used in driving video mining, traffic analysis, driver behavior understanding, etc.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Detecting Vehicle Interactions in Driving Videos via Motion Profiles


    Beteiligte:
    Wang, Zheyuan (Autor:in) / Zheng, Jiang Yu (Autor:in) / Gao, Zhen (Autor:in)


    Erscheinungsdatum :

    20.09.2020


    Format / Umfang :

    1721330 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Vehicle–Bicyclist Dynamic Position Extracted From Naturalistic Driving Videos

    Liu, Chao / Fujishiro, Ryo / Christopher, Lauren et al. | IEEE | 2017


    Method for detecting vehicle speed based on road monitoring videos

    MIAO ZHENJIANG / HU BIYING / ZHANG QIANG et al. | Europäisches Patentamt | 2015

    Freier Zugriff

    Driving Behavior Aware Caption Generation for Egocentric Driving Videos Using In-Vehicle Sensors*

    Zhang, Hongkuan / Takeda, Koichi / Sasano, Ryohei et al. | IEEE | 2021