This paper presents an approach for multi-spacecraft trajectory planning, optimization and control. Maneuver planning as a global optimization problem is solved using genetic algorithms (GA). Methods were devised to reduce the dimensionality of the decision space, yet retain adequate generality of maneuver possibilities. A compact formulation based on thruster switching-times was used for generic point-to-point spacecraft maneuvers. Optimal control is implicitly satisfied by "bang-coast-bang" actuation schemes. Maneuver profiles, including line-of-sight and orthogonal collision avoidance, were developed. A GA optimizer selects the optimal parameter set for each scenario. Simulation case studies were performed for 2, 3 and 5-spacecraft formation initialization tasks. Objective criteria used in the evaluation function included: endpoint errors; collision avoidance; path lengths; maneuvering times; fuel usage and equalization. In all cases, a nominal GA computed feasible trajectories. Objective criteria trade-offs were demonstrated by selective weighting. Ongoing work includes multi-objective optimization of multiple spacecraft trajectories using niched-Pareto genetic algorithms.
Multi-spacecraft trajectory optimization and control using genetic algorithm techniques
2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484) ; 7 ; 99-108 vol.7
01.01.2000
1038317 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
Multi-spacecraft Trajectory Optimization and Control Using Genetic Algorithm Techniques
British Library Conference Proceedings | 2000
|Spacecraft Droplet Hover Trajectory Optimization Based on Chaotic Genetic Algorithm
Springer Verlag | 2024
|Spacecraft trajectory optimization
TIBKAT | 2010
|Spacecraft Trajectory Optimization
TIBKAT | 2010
|Spacecraft Trajectory Optimization
SLUB | 2010
|