Navigation is instrumental in the successful deployment of Autonomous Underwater Vehicles (AUVs). Sensor hardware is installed on AUVs to support navigational accuracy. Sensors, however, may fail during deployment, thereby jeopardizing the mission. This work proposes a solution, based on an adaptive dynamic model, to accurately predict the navigation of the AUV. A hydrodynamic model, derived from simple laws of physics, is integrated with a powerful non-parametric regression method. The incremental regression method, namely the Locally Weighted Projection Regression (LWPR), is used to compensate for un-modeled dynamics, as well as for possible changes in the operating conditions of the vehicle. The augmented hydrodynamic model is used within an Extended Kalman Filter, to provide optimal estimations of the AUV's position and orientation. Experimental results demonstrate an overall improvement in the prediction of the vehicle's acceleration and velocity.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improving Underwater Vehicle navigation state estimation using Locally Weighted Projection Regression


    Beteiligte:
    Fagogenis, Georgios (Autor:in) / Flynn, David (Autor:in) / Lane, David M. (Autor:in)


    Erscheinungsdatum :

    01.05.2014


    Format / Umfang :

    923057 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Estimation of Vehicle Trajectories with Locally Weighted Regression

    Toledo, Tomer / Koutsopoulos, Haris N. / Ahmed, Kazi I. | Transportation Research Record | 2007


    Autonomous Underwater Vehicle Navigation

    P. A. Miller / J. Farrell / Y. Zhao et al. | NTIS | 2008


    Autonomous Underwater Vehicle Navigation

    Leonard, John J. / Bahr, Alexander | Springer Verlag | 2016


    Quality Control for Steel Products through Locally-weighted Regression

    Shigemori, H. / Nagao, R. / Hirata, N. et al. | British Library Online Contents | 2008