Principal component analysis (PCA) has been very successful in image recognition. Recent researches on PCA-based methods are mainly concentrated on two issues, feature extraction and classification. In this paper we propose bi-directional PCA (BDPCA) with assembled matrix distance (AMD) metric to simultaneously deal with these two issues. For feature extraction, we propose a BDPCA approach which can reduce the dimension of the original image matrix in both column and row directions. For classification, we present an AMD metric to calculate the distance between two feature matrices. The results of our experiments show that, BDPCA with AMD metric is very effective in image recognition.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Bi-directional PCA with assembled matrix distance metric


    Beteiligte:
    Wangmeng Zuo, (Autor:in) / Kuanquan Wang, (Autor:in) / Zhang, D. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    278551 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Bi-Dierectional PCA with assembled Matrix Distance Metric

    Zuo, W. / Wang, K. / Zhang, D. | British Library Conference Proceedings | 2005


    DIRECTIONAL SPEED AND DISTANCE SENSOR

    SUBRAMANYA BALU | Europäisches Patentamt | 2024

    Freier Zugriff

    DIRECTIONAL SPEED AND DISTANCE SENSOR

    SUBRAMANYA BALU | Europäisches Patentamt | 2020

    Freier Zugriff

    Directional speed and distance sensor

    SUBRAMANYA BALU | Europäisches Patentamt | 2022

    Freier Zugriff

    Directional speed and distance sensor

    SUBRAMANYA BALU | Europäisches Patentamt | 2018

    Freier Zugriff