The identification of brain tumors is an important task in medical imaging. Manual classification of brain tumors can lead to inaccurate diagnoses due to various restricting factors. Brain tumors can be difficult to extract from images because they have diverse appearances and can look similar to normal tissue. This research study proposes a new way to identify brain tumors with brain pictures using convolutional neural network. The proposed method is tested on a dataset containing different tumor sizes, tumor shapes, tumor locations, and tumor image intensities. Simulation results shows that proposed classifier successfully identifies different types of tumors i.e. implemented a CNN with Keras and Tensorflow, which outperformed the traditional classifier with an accuracy of $\mathbf{9 7. 8 7 \%}$.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Classification of Brain Tumor based on Convolution Neural Network


    Beteiligte:


    Erscheinungsdatum :

    06.11.2024


    Format / Umfang :

    593318 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Classification of Brain Tumor Using Convolutional Neural Network

    Pathak, Miss Krishna / Pavthawala, Mahekkumar / Patel, Miss Nirali et al. | IEEE | 2019



    VEHICLE CLASSIFICATION USING THE CONVOLUTION NEURAL NETWORK APPROACH

    Janak TRIVEDI / Mandalapu Sarada DEVI / Dave DHARA | DOAJ | 2021

    Freier Zugriff

    Co-Channel Multi-Signal Modulation Classification Based on Convolution Neural Network

    Yin, Zhendong / Zhang, Rui / Wu, Zhilu et al. | IEEE | 2019