In this paper, we present a novel multi-sensor fusion framework for tightly coupled monocular visual-LiDAR odometry and mapping. Compared to previous visual-LiDAR fusion frameworks, our proposed framework leverages more constraints among LiDAR features and visual features and integrates that in a tightly coupled approach. Specifically, the framework starts with a preprocess module which contains LiDAR feature extraction, visual feature extraction and tracking, and visual feature depth recover. Then a frame-to-frame odometry module is established by fusing visual feature tracking and LiDAR feature match between frames, aiming to provide a coarse pose estimation for next module. Finally, to refine the pose and build a multi-modal map, we introduce a multi-modal mapping module that tightly couple multi-modal feature constraints by matching or registering multi-modal features to multi-modal map. In addition, the proposed fusion framework also functions well in sensor-degraded environment (texture-less or structure-less), which increases its robustness. The effectiveness and performance of the proposed fusion framework are demonstrated and evaluated on the public KITTI odometry benchmark, and results show that our proposed fusion framework achieves comparable performance compared with the state-of-the-art visual-LiDAR odometry frameworks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Modal Feature Constraint Based Tightly Coupled Monocular Visual-LiDAR Odometry and Mapping


    Beteiligte:
    Shu, Chengfu (Autor:in) / Luo, Yutao (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.05.2023


    Format / Umfang :

    1598067 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Unified multi-modal landmark tracking for tightly coupled lidar-visual-inertial odometry

    Wisth, D / Camurri, M / Das, S et al. | BASE | 2022

    Freier Zugriff


    InLIOM: Tightly-Coupled Intensity LiDAR Inertial Odometry and Mapping

    Wang, Hanqi / Liang, Huawei / Li, Zhiyuan et al. | IEEE | 2024


    Hierarchical Distribution-Based Tightly-Coupled LiDAR Inertial Odometry

    Wang, Chengpeng / Cao, Zhiqiang / Li, Jianjie et al. | IEEE | 2024


    LIO-LOT: Tightly-Coupled Multi-Object Tracking and LiDAR-Inertial Odometry

    Li, Xingxing / Yan, Zhuohao / Feng, Shaoquan et al. | IEEE | 2025