Railway track fasteners are critical components ensuring track stability and alignment. Defects in these fasteners, such as missing bolts or broken parts, can compromise railway safety, making early detection essential. This paper presents a comparative study of various image processing techniques to detect defects in railway fasteners by analyzing track images. Techniques evaluated include the variance Projection Method, wavelet Transform, thresholding, Morphological Operations and Connected Component Analysis. These techniques were assessed based on their detection accuracy, computational efficiency, and robustness to variations in lighting and angle. The results provide valuable insights into the most effective image processing techniques for fastener defect detection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Comparative Study of Detection Techniques for Defective Fasteners in Railway Track


    Beteiligte:


    Erscheinungsdatum :

    16.01.2025


    Format / Umfang :

    885665 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Railway Track Fasteners Fault Detection using Deep Learning

    Lin, Ya-Wen / Hsieh, Chen-Chiung / Huang, Wei-Hsin et al. | IEEE | 2019


    Handheld tool for installing or removing railway track fasteners

    Europäisches Patentamt | 2020

    Freier Zugriff

    Fasteners: Keeping track tight

    Judge, Tom | IuD Bahn | 2004


    Fascinating fasteners for keeping track tight

    Nunez, Jennifer | IuD Bahn | 2012


    Railway track detection vehicle

    CHEN JIAN / LIU JICHENG / HAN LIANFU et al. | Europäisches Patentamt | 2025

    Freier Zugriff