Content-based image retrieval systems still have difficulties to bridge the semantic gap between the low-level representation of images and the high level concepts the user is looking for. Relevance feedback methods deal with this problem using labels provided by users, but only during the current retrieval session. In this paper, we introduce a semantic learning method to manage user labels in CBIR applications. Our approach uses a kernel matrix to represent semantic information in a statistical learning framework. The kernel matrix is updated according to labels provided by users after retrieval sessions. Experiments have been carried out on a large generalist database in order to validate our approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Semantic kernel learning for interactive image retrieval


    Beteiligte:
    Gosselin, P.H. (Autor:in) / Cord, M. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    163614 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Semantic Kernel Learning for Interactive Image Retrieval

    Gosselin, P. H. / Cord, M. | British Library Conference Proceedings | 2005


    Adaptive quasiconformal kernel metric for image retrieval

    Heisterkamp, D.R. / Jing Peng, / Dai, H.K. | IEEE | 2001


    Adaptive Quasiconformal Kernel Metric for Image Retrieval

    Heisterkamp, D. R. / Peng, J. / Dai, H. K. et al. | British Library Conference Proceedings | 2001


    Online kernel density estimation for interactive learning

    Kristan, M. / Skocaj, D. / Leonardis, A. | British Library Online Contents | 2010


    Deep Semantic Coding for Wireless Image Retrieval

    Wang, Ying / Qi, Chenhao | IEEE | 2022