The cornerstone of cognitive systems is environment awareness which enables agile and adaptive use of channel resources. Whitespace prediction based on learning the statistics of the wireless traffic has proven to be a powerful tool to achieve such awareness. In this paper, we propose a novel HiddenMarkov Model (HMM) based spectrum learning and prediction approach which accurately estimates the exact length of the whitespace in WiFi channels within the shared industrial scientific medical (ISM) bands. We show that extending the number of hidden states and formulating the prediction problem as a maximum likelihood (ML) classification leads to a substantial increase in the prediction horizon compared to classical approaches that predict the immediate (short-term) future. We verify the proposed algorithm through simulations which utilize a model for WiFi traffic based on extensive measurement campaigns.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Whitespace Prediction Using Hidden Markov Model Based Maximum Likelihood Classification


    Beteiligte:
    Saad, Ahmad (Autor:in) / Schepker, Henning F. (Autor:in) / Staehle, Barbara (Autor:in) / Knorr, Rudi (Autor:in)


    Erscheinungsdatum :

    01.04.2019


    Format / Umfang :

    467047 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Motion Prediction of Tugboats Using Hidden Markov Model

    Zhang, Zijian / Zhao, Jie / Wang, Tengfei et al. | IEEE | 2023


    Improvement of Attitude Estimation using Hidden Markov Model Classification

    Kang, C. / Park, C. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2010




    Freeway traffic flow prediction based on hidden Markov model

    Jiang, Jiyang / Guo, Tangyi / Pan, Weipeng et al. | SPIE | 2022