A new sensor fusion algorithm for Alternative Position, Navigation and Timing (APNT) is designed with deep Recurrent Neural Network (RNN) using Long Short-Term Memory (LSTM). The proposed deep RNN for APNT estimates the position of the Unmanned Aerial Vehicle (UAV) using the UAV position measurements from the holographic radar and the Radio Positioning System (RPS). For the training dataset generation, flight simulations with multiple episodes are conducted with the measurement models of the holographic radar and the RPS. The testing results of the well-trained deep RNN are provided for verification and validation of the proposed deep RNN. The advantage of the proposed deep RNN over the Extended Kalman Filter (EKF) which is a conventional sensor fusion algorithm is demonstrated by comparing their testing results.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Recurrent Neural Network based Sensor Fusion Algorithm for Alternative Position, Navigation and Timing


    Beteiligte:


    Erscheinungsdatum :

    03.10.2021


    Format / Umfang :

    2657131 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Alternative Position Navigation & Timing (APNT) Based on Existing DME and UAT Ground Signals

    Lo, S.C. / Peterson, B. / Akos, D. et al. | British Library Conference Proceedings | 2011



    ENHANCED MULTI-SENSOR DATA FUSION METHOD USING RECURRENT NEURAL NETWORK

    He, Jing / Guo, Chengjun / Tao, Chao | TIBKAT | 2021



    Position, Navigation, and Timing for Security

    Martin, Jean-Christophe | Springer Verlag | 2020