The hard landing incident seriously affects the safety of the aircraft during the landing phase. In this paper, a hard landing prediction model is proposed, which is improved based on the Autoregressive Integrated Moving Average Model (ARIMA) using the Particle Swarm Optimization (PSO) algorithm. In comparison to the ARIMA model, introducing the PSO algorithm can find the optimum combination of parameters for the model and improve the prediction accuracy. For the vertical acceleration series during the landing intervals, the stationarity test and white noise test of the data are performed to determine the applicability of the ARIMA model. The PSO algorithm with a targeted fitness function to determine the model order. The results of the experiments show that PSO-ARIMA model is better than the ARIMA model in terms of Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), with 34.38%, 22.12% and 23.94% descent, respectively.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Civil Aircraft Hard Landing Prediction Based on PSO-ARIMA Model


    Beteiligte:
    Wu, Xiangxin (Autor:in) / Yu, Hui (Autor:in) / Ren, Yanli (Autor:in)


    Erscheinungsdatum :

    12.10.2022


    Format / Umfang :

    1397209 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Aircraft hard landing indicator

    M N HEMANTH / BODKI BASAVARAJ | Europäisches Patentamt | 2024

    Freier Zugriff

    AIRCRAFT HARD LANDING INDICATOR

    MN HEMANTH / BODKI BASAVARAJ | Europäisches Patentamt | 2024

    Freier Zugriff

    AIRCRAFT HARD LANDING INDICATOR

    M N HEMANTH / BODKI BASAVARAJ | Europäisches Patentamt | 2024

    Freier Zugriff

    AIRCRAFT HARD LANDING INDICATOR

    M N HEMANTH / BODKI BASAVARAJ | Europäisches Patentamt | 2024

    Freier Zugriff