Modeling textures using Gaussian Markov random fields (GMRF) has been successfully used in classifying textures. However, these models do not perform well for self-similar textures such as those generated from fractional Brownian motion. The authors show that by using the difference images at different scales instead of the original image, one can significantly increase the performance of classifying self-similar texture patterns using GMRF models.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-resolution texture analysis of self-similar textures using hierarchical Gaussian Markov random field models


    Beteiligte:
    Samarabandu, J. (Autor:in) / Acharya, R. (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    303460 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multi-resolution Texture Analysis of Self-Similar Textures using Hierarchical Gaussian Markov Random Field Models

    Samarabandu, J. / Acharya, R. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994


    Infrared Texture Simulation Using Gaussian-Markov Random Fields

    Shao, X. p. / Zhao, X. m. / Xu, J. et al. | British Library Online Contents | 2004


    Gaussian Markov random field based improved texture descriptor for image segmentation

    Dharmagunawardhana, C. / Mahmoodi, S. / Bennett, M. et al. | British Library Online Contents | 2014


    Texture analysis using partially ordered Markov models

    Davidson, J. / Talukder, A. / Cressie, N. | IEEE | 1994


    Texture Analysis using Partially Ordered Markov Models

    Davidson, J. L. / Talukder, A. / Cressie, N. et al. | British Library Conference Proceedings | 1994