A network slicing elastic switching algorithm based on deep reinforcement learning is proposed to address the network disconnection problem caused by the mobility of VR end users, which requires fast network switching to ensure service continuity. The slicing switching problem is modeled as a Markov decision process (MDP), which matches users, slices, and base stations. Introducing Double Deep Q-network (DDQN) into software defined network (SDN) controllers to achieve intelligent network resilient switching, improving system access success rate, average rate, and service continuity. The simulation results show that the proposed algorithm has a success rate of over 85% in access, and there is also a significant improvement in user speed and service continuity.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Network Slicing Elastic Switching Algorithm for VR Devices Based on DDQN


    Beteiligte:
    Zhou, Yuanyuan (Autor:in) / Li, Xiaohui (Autor:in) / Lv, Siting (Autor:in) / He, Guodong (Autor:in) / Shi, Mingli (Autor:in) / Chen, Xingbo (Autor:in)


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    1195036 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DDQN based Routing Algorithm for IRS-Assisted MANET Without Explicit CSI

    Zhou, Xinyu / Zhao, Ming-Min / Lei, Ming et al. | IEEE | 2024


    Network Slicing with Elastic SFC

    Li, Xu / Rao, Jaya / Zhang, Hang et al. | IEEE | 2017


    UAV Path Planning Based on DDQN for Mountain Rescue

    Wang, Yu / Jiang, Chuanqi / Ren, Tianjun | British Library Conference Proceedings | 2022



    A Novel UAV Path Planning Method Based on Layered PER-DDQN

    Wang, Weixiang / Zhang, An / Bi, Wenhao et al. | Springer Verlag | 2022