In this paper we present a real time pedestrian detection system that works on low quality infrared videos. We introduce probabilistic templates to capture the variations in human shape, especially for the case where contrast is low and body parts are missing. We present experimental results on infrared videos taken from a moving vehicle in various urban street scenarios to demonstrate the feasibility of the approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Probabilistic template based pedestrian detection in infrared videos


    Beteiligte:
    Nanda, H. (Autor:in) / Davis, L. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    581074 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Probabilistic Template Based Pedestrian Detection in Infrared Videos

    Nanda, H. / Davis, L. / INRIA et al. | British Library Conference Proceedings | 2003


    Predicting Pedestrian Counts for Crossing Scenario Based on Fused Infrared-Visual Videos

    Shize Huang / Wei Chen / Rongjie Yu et al. | DOAJ | 2018

    Freier Zugriff

    Context-compensated Probabilistic Pedestrian Detection

    Willems, Tim / Aelterman, Jan / Van Hamme, David | IEEE | 2024


    Pedestrian detection in surveillance videos based on CS-LBP feature

    Varga, Domonkos / Havasi, Laszlo / Sziranyi, Tamas | IEEE | 2015


    Pedestrian Detection in Far Infrared Images based on the use of Probabilistic Templates

    Bertozzi, M. / Broggi, A. / Gomez, C. Hilario et al. | IEEE | 2007