Cross-spectrum depth estimation aims to provide a reliable depth map under variant-illumination conditions with a pair of dual-spectrum images. It is valuable for autonomous driving applications when vehicles are equipped with two cameras of different modalities. However, images captured by different-modality cameras can be photometrically quite different, which makes cross-spectrum depth estimation a very challenging problem. Moreover, the shortage of large-scale open-source datasets also retards further research in this field. In this paper, we propose an unsupervised visible light(VIS)-image-guided cross-spectrum (i.e., thermal and visible-light, TIR-VIS in short) depth-estimation framework. The input of the framework consists of a cross-spectrum stereo pair (one VIS image and one thermal image). First, we train a depth-estimation base network using VIS-image stereo pairs. To adapt the trained depth-estimation network to the cross-spectrum images, we propose a multi-scale feature-transfer network to transfer features from the TIR domain to the VIS domain at the feature level. Furthermore, we introduce a mechanism of cross-spectrum depth cycle-consistency to improve the depth estimation result of dual-spectrum image pairs. Meanwhile, we release to society a large cross-spectrum dataset with visible-light and thermal stereo images captured in different scenes. The experiment result shows that our method achieves better depth-estimation results than the compared existing methods. Our code and dataset are available on https://github.com/whitecrow1027/CrossSP_Depth.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Unsupervised Cross-Spectrum Depth Estimation by Visible-Light and Thermal Cameras


    Beteiligte:
    Guo, Yubin (Autor:in) / Qi, Xinlei (Autor:in) / Xie, Jin (Autor:in) / Xu, Cheng-Zhong (Autor:in) / Kong, Hui (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.10.2023


    Format / Umfang :

    6850553 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Unsupervised Multi-Spectrum Stereo Depth Estimation for All-Day Vision

    Guo, Yubin / Kong, Hui / Gu, Shuo | IEEE | 2024


    Vehicle Distance Measurement based on Visible Light Communication Using Stereo Cameras

    Huang, Ruiyi / Yamazato, Takaya / Kinoshita, Masayuki et al. | IEEE | 2021


    VEHICLE DISTANCE MEASUREMENT BASED ON VISIBLE LIGHT COMMUNICATION USING STEREO CAMERAS

    Huang, Ruiyi / Yamazato, Takaya / Kinoshita, Masayuki et al. | British Library Conference Proceedings | 2021


    Depth range accuracy for plenoptic cameras

    Monteiro, Nuno Barroso / Marto, Simão / Barreto, João Pedro et al. | British Library Online Contents | 2018