Edge computing network (ECN), which could process learning tasks at the edge, is considered as a potential solution to release the burden of the cloud. Meanwhile, to protect user privacy, federated learning (FL) is used in the ECN to establish models by multi-party collaborative learning on numbers of edge nodes (ENs). However, due to the frequent data interaction between the cloud server and distributed ENs, the reliability of data transmission and the privacy protection capability of the network cannot be guaranteed. In this paper, a distributed ECN is considered, to improve the learning efficiency in the multi-party FL while ensuring the reliability of ENs, a consortium blockchain enabled asynchronous federated learning (AFLChain) algorithm is proposed, which could dynamically allocate the learning tasks to ENs according to their computing capabilities. Moreover, an entropy weight-based reputation mechanism is introduced for the EN evaluation to further improve the performance of the AFLChain. Finally, the simulation results demonstrate the effectiveness of the proposed algorithms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    AFLChain: Blockchain-enabled Asynchronous Federated Learning in Edge Computing Network


    Beteiligte:
    Huang, Xiaoge (Autor:in) / Deng, Xuesong (Autor:in) / Chen, Qianbin (Autor:in) / Zhang, Jie (Autor:in)


    Erscheinungsdatum :

    01.06.2023


    Format / Umfang :

    2022999 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Blockchain-Enabled Federated Learning for Enhanced Collaborative Intrusion Detection in Vehicular Edge Computing

    Abou El Houda, Zakaria / Moudoud, Hajar / Brik, Bouziane et al. | IEEE | 2024


    Blockchain-Enabled Federated Learning Approach for Vehicular Networks

    Sultana, Shirin / Hossain, Jahin / Billah, Maruf et al. | ArXiv | 2023

    Freier Zugriff

    DAG Blockchain-Assisted Asynchronous Federated Mutual Learning for Autonomous Driving

    Wu, Yuhang / Huang, Xiaoge / Cao, Bin et al. | IEEE | 2025