We describe technology for robust traffic monitoring and automated vehicle control using decision-theoretic and probabilistic reasoning methods. In this work, we have designed and implemented probabilistic models for deriving high-level descriptions of traffic conditions, as well as the maneuvers and intentions of individual vehicles, from visual observation of a traffic scene. Enhancements to standard probabilistic modeling and inference techniques have improved the performance of uncertain reasoning over time with continuous variables. We have demonstrated our models and algorithms in real-time analysis of traffic images as well as control of simulated vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Decision-theoretic reasoning for traffic monitoring and vehicle control


    Beteiligte:
    Wellman, M.P. (Autor:in) / Chao-Lin Liu (Autor:in) / Pynadath, D. (Autor:in) / Russell, S. (Autor:in) / Forbes, J. (Autor:in) / Huang, T. (Autor:in) / Kanazawa, K. (Autor:in)


    Erscheinungsdatum :

    01.01.1995


    Format / Umfang :

    603005 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Decision-Theoretic Reasoning for Traffic Monitoring and Vehicle Control

    Wellman, M. / Liu, C. / Pynadath, D. et al. | British Library Conference Proceedings | 1995


    Dynamic Game Theoretic Electric Vehicle Decision Making

    Ouyang, Qianyu / Jia, Xianzhe | SAE Technical Papers | 2024


    Decision fusion and reasoning for traffic sign recognition

    Meuter, Mirko / Muller-Schneiders, Stefan / Nunny, Christian et al. | IEEE | 2010


    Adaptive Game-Theoretic Decision Making for Autonomous Vehicle Control at Roundabouts

    Tian, Ran / Li, Sisi / Li, Nan et al. | ArXiv | 2018

    Freier Zugriff