In this paper we introduce SVRUM: a cost-effective sensor platform to be mounted on Vulnerable Road User (VRU) vehicles (bicycles, e-bikes, kicks scooters) for the detection of road anomalies. SVRUM consists of a 3-axis accelerometer, a short-range sonar sensor, and a GPS module, which are connected to an Arduino board. We used SVRUM to collect data for eight different types of road anomalies (now publicly available to the community) and test various data analysis techniques, including machine learning algorithms, to identify road anomalies. The results are auspicious and demonstrate the potential of SVRUM in enhancing road safety for VRUs.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Road Anomalies Detection Using Low-Cost Sensors and Machine Learning


    Beteiligte:
    Pasti, Mattia (Autor:in) / Ridolfo, Enrico (Autor:in) / Zanella, Andrea (Autor:in)


    Erscheinungsdatum :

    02.09.2024


    Format / Umfang :

    17194054 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Fused Method of Machine Learning and Dynamic Time Warping for Road Anomalies Detection

    Zheng, Zengwei / Zhou, Mingxuan / Chen, Yuanyi et al. | IEEE | 2022



    Investigation on Identifying Road Anomalies using In-Vehicle Sensors for Cooperative Applications and Road Asset Management

    Padarthy, Moksheeth / Sami, Mohammed / Heyns, Emiliano | Transportation Research Record | 2020


    Detecting Road Anomalies

    BATTS ZACHARY THOMAS / SUN LUDONG / WOODARD KY et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    DETECTING ROAD ANOMALIES

    BATTS ZACHARY THOMAS / SUN LUDONG / WOODARD KY et al. | Europäisches Patentamt | 2022

    Freier Zugriff