We address the problem of determining optimal sensor precisions for estimating the states of linear time-varying discrete-time stochastic dynamical systems, with guaranteed bounds on the estimation errors. This is performed in the Kalman filtering framework, where the sensor precisions are treated as variables. They are determined by solving a constrained convex optimization problem, which guarantees the specified upper bound on the posterior error variance. Optimal sensor precisions are determined by minimizing the $l_1$ norm, which promotes sparseness in the solution and indirectly addresses the sensor selection problem. The theory is applied to realistic flight mechanics and astrodynamics problems to highlight its engineering value. These examples demonstrate the application of the presented theory to 1) determine redundant sensing architectures for linear time invariant systems, 2) accurately estimate states with low-cost sensors, and 3) optimally schedule sensors for linear time-varying systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimal Sensor Precision for Multirate Sensing for Bounded Estimation Error


    Beteiligte:


    Erscheinungsdatum :

    01.04.2022


    Format / Umfang :

    1005969 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multirate Estimation

    Hong, L. / IEEE; Dayton Section / IEEE; Aerospace and Electronics Systems Society | British Library Conference Proceedings | 1994


    Multirate estimation

    Hong, L. | IEEE | 1994


    Reduced-order multirate estimation

    Haddad, Wassim M. / Kapila, Vikram | AIAA | 1994


    Reduced-Order Multirate Estimation

    Haddad, W.M. | Online Contents | 1994