This paper proposes a constrain spatial adaptive iterative learning controller (CSAILC) for the displacement-speed trajectory tracking of automatic train control system with unknown parametric/nonparametric uncertainties and speed constraints. First, the nonlinear dynamic model of train operation is transformed from temporal domain into spatial domain utilizing a spatial state differentiator. Besides, the displacement-related parametric/nonparametric uncertainties are updated in the iteration axis. Furthermore, a barrier function is involved to satisfy the speed constraint, and the corresponding convergence analysis of the proposed CSAILC for automatic train control (ATC) is derived based on the spatial composite energy function. In addition, numerical simulations of train tracking control are carried out, and simulation results indicate that the proposed CSAILC achieves good effectiveness in a high-speed train (HST) control system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Constrained Spatial Adaptive Iterative Learning Control for Trajectory Tracking of High Speed Train


    Beteiligte:
    Li, Zhenxuan (Autor:in) / Yin, Chenkun (Autor:in) / Ji, Honghai (Autor:in) / Hou, Zhongsheng (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.08.2022


    Format / Umfang :

    1397774 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Iterative learning control for farm vehicle trajectory tracking

    Bu, Xuhui / Hou, Zhongsheng / Yu, Fashan | IEEE | 2013



    Iterative Learning Trajectory Tracking Control of an Autonomous Bicycle

    Wang, Yixiao / Bruzelius, Fredrik / Sjöberg, Jonas | Springer Verlag | 2024

    Freier Zugriff

    Speed trajectory optimization for a high-speed train

    Xiao, Zhuang / Zhao, Zining / Wang, Qingyuan et al. | TIBKAT | 2020


    Trajectory-Tracking for Mobile Vehicle Based on Iterative Learning Control

    Ding, Hao / Song, Lu / Dou, Jinbiao et al. | IEEE | 2024