The paper presents a probabilistic approach for online parameter estimation of an enhanced car-following model appropriate for multi-lane traffic, which is based on an extension of the well-known Intelligent Driver Model (IDM). The approach explicitly considers the simultaneous influence of several interacting vehicles on the longitudinal dynamics of the ego-vehicle. Therefore, a method to extract the relevant reference vehicles considered in the proposed multi-lane car-following model is developed. In order to calibrate the model parameters online, a particle filter approach, which is able to deal with the overdetermined model structure, is employed. Experimental studies using a real highway scenario observed by vehicle surroundings sensors show the need of the online-calibrated multi-lane architecture. To use the model for vehicle speed prediction, a further learning-based extension is suggested which enables the adaption of the model parameters over the prediction horizon.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Interaction-Aware Approach for Online Parameter Estimation of a Multi-lane Intelligent Driver Model


    Beteiligte:


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    723787 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Intention-Aware Lane Keeping Assist Using Driver Gaze Information

    Dahl, John / de Campos, Gabriel Rodrigues / Fredriksson, Jonas | IEEE | 2023



    Driver-Model of Lane Change Maneuvers

    Ehmanns, D. / ITS Congress Association | British Library Conference Proceedings | 2000


    Traffic Aware Lane Determination for Human Driver and Autonomous Vehicle Driving System

    RATNASINGAM SIVALOGESWARAN | Europäisches Patentamt | 2017

    Freier Zugriff