In this paper we propose features based on sub-space projection methods using Principal Component Analysis (PCA) and Independent Component Analysis (ICA) on wavelet sub-band for face recognition. Wavelet based sub-band decomposition helps to reduce the size of image, and the approximate image obtained in the low-low (approximate) band is used here to apply sub-space projection methods. This improves the speed of feature extraction process without compromising the recognition performance. Classification of the faces based on the extracted features was carried out by using a Linear Discriminant function based classifier on Olivetti Research Laboratory (ORL) image database. Different level of wavelet decomposition is carried out and recognition performance evaluated. Highest recognition was achieved at 3 level wavelet decomposition using ICA. The proposed scheme uses minimum number of features and the recognition results obtained show an improvement of about 0.5% over some of the existing schemes with lower computation cost.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Wavelet Based Sub-space Features for Face Recognition


    Beteiligte:
    Hu, Wen (Autor:in) / Farooq, O. (Autor:in) / Datta, S. (Autor:in)


    Erscheinungsdatum :

    01.05.2008


    Format / Umfang :

    284236 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Wavelet-Based PCA for Human Face Recognition

    Yuen, P. C. / Dai, D. Q. / Feng, G. C. et al. | British Library Conference Proceedings | 1998


    Wavelet-Based Illumination Normalization for Face Recognition

    Du, S. / Ward, R. | British Library Conference Proceedings | 2005


    Wavelet-based PCA for human face recognition

    Yuela, P.C. / Dai, D.Q. / Feng, G.C. | IEEE | 1998


    Wavelet Based Illumination Invariant Preprocessing in Face Recognition

    Goh, Y. Z. / Teoh, Andrew B. J. / Goh, Michael K. O. | IEEE | 2008