The paper addresses a problem of reinforcement learning in a homogeneous non-communicating multi-agent system for sequential decision making. We introduce a particular reinforcement learning model composed of evidential reinforcement neural networks representing agents, a fusion center, and a decision maker. The fusion center combines beliefs in each hypothesis under consideration generated by the agents and produces pignistic probabilities of the hypotheses under consideration. These pignistic probabilities are used by a decision maker in a sequential pignistic probability ratio test to choose one of two actions: "defer decision" or "decide hypothesis k". The test is shaped to encourage early decisions and incorporates a finite decision deadline. Upon each decision, a non-binary reinforcement signal is computed by the environment, and is then fed back to the agents, which utilize it to learn an optimizing belief function. The learning algorithm adapts the "profit sharing strategy" to the sequential decision making setting.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Distributed reinforcement learning for sequential decision making


    Beteiligte:
    Rogova, G. (Autor:in) / Scott, P. (Autor:in) / Lolett, C. (Autor:in)


    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    388178 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Distributed Reinforcement Learning For Sequential Decision Making

    Rogova, G. / Scott, P. / Lollett, C. et al. | British Library Conference Proceedings | 2002


    Spacecraft Decision-Making Autonomy Using Deep Reinforcement Learning

    Harris, Andrew / Teil, Thibaud / Schaub, Hanspeter | TIBKAT | 2019



    DISTRIBUTED DECISION MAKING

    SOLBERG KENNETH / JOHANSSON CARL / SKOGVOLD MORTEN | Europäisches Patentamt | 2019

    Freier Zugriff

    Distributed Decision Making

    SOLBERG KENNETH / JOHANSSON CARL / SKOGVOLD MORTEN | Europäisches Patentamt | 2020

    Freier Zugriff