Predicting routes is a critical enabler for many new location-based applications and services, such as warning drivers about congestion- or accident-risky areas. Hybrid vehicles can also utilize the route prediction for optimizing their charging and discharging phases. In this paper, a new lightweight route recognition approach using instance-based learning is introduced. In this approach, the current route is compared in real-time against the route instances observed in past, and the most similar route is selected. In order to assess the similarity between the routes, a similarity measure based on the longest common subsequence (LCSS) is employed, and an algorithm for incrementally evaluating the LCSS is introduced. The feasibility of the proposed approach is empirically evaluated using real-world data; the obtained results indicate that the routes can be accurately recognized with a delay of 11 turn-points.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time recognition of personal routes using instance-based learning


    Beteiligte:
    Mazhelis, O. (Autor:in)


    Erscheinungsdatum :

    01.06.2011


    Format / Umfang :

    169166 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Real-Time Recognition of Personal Routes Using Instance-Based Learning

    Mazhelis, O. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2011


    Dynamic prediction of drivers' personal routes through machine learning

    Yue Dai / Yuan Ma / Qianyi Wang et al. | IEEE | 2016


    Real time destination prediction based on efficient routes

    Krumm,J. / Microsoft,US | Kraftfahrwesen | 2006


    Real Time Destination Prediction Based On Efficient Routes

    Krumm, John | SAE Technical Papers | 2006


    Real-time optimization of autonomous vehicle routes

    KUBIE MARTIN | Europäisches Patentamt | 2021

    Freier Zugriff