This study presents a novel subspace-based blind channel estimation method for reconfigurable intelligent surface (RIS) assisted orthogonal frequency division multiplexing systems. In existing research on RIS control, reflection characteristics of RIS is assumed to be fixed during data transmission to maximize data rates. However, this fixed reflection pattern undermines the uniqueness of the estimation result by the subspace-based estimation methods. To address this issue, a new data transmission scheme is proposed, comprising an implicit channel estimation phase followed by a rate maximization phase. In the initial phase, the reflection pattern dynamically varies to realize blind channel estimation without any training symbols transmission. Subsequently, in the rate maximization phase, the optimal reflection pattern is determined based on the estimated channel obtained during the first phase. Computational simulations demonstrate the effectiveness of the proposed method in accurately estimating the channel without the need for training signals.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Blind Channel Estimation for Reconfigurable Intelligent Surface Assisted OFDM Systems


    Beteiligte:
    Suga, Norisato (Autor:in)


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    452833 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Blind Channel Estimation Technique for OFDM Systems over Time Varying Channels

    Bariah, L. / Al-Dweik, A. / Muhaidat, S. | IEEE | 2018



    Reconfigurable Intelligent Surface Assisted Railway Communications: A survey

    Habib, Aline / Falou, Ammar El / Langlais, Charlotte et al. | IEEE | 2023


    Reconfigurable Intelligent Surface (RIS)-Assisted UAV Cellular Communication

    Ihsana Muhammed, P. / Moidutty, Yasar / Sreenarayanan, N. M. et al. | Springer Verlag | 2022