It has been roughly a decade since the first papers using deep neural networks (DNNs) for radar applications were published. Deep learning has revolutionized almost every technical area, from computer vision and natural language processing to health, finance, and biology—any field where data can be analyzed to provide insight. However, in radar applications, deep learning faces unique challenges due to the phenomenology of radio frequency (RF) propagation that creates essential differences in the data itself and impacts the design of DNNs for radar signal analysis [1], [2], [3].


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Guest Editorial for the TAES Special Section on Deep Learning for Radar Applications


    Beteiligte:
    Gurbuz, Sevgi Z. (Autor:in) / Bilik, Igal (Autor:in) / Rosenberg, Luke (Autor:in)


    Erscheinungsdatum :

    01.02.2024


    Format / Umfang :

    70249 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Guest Editorial for the TAES Special Section on Machine Learning Methods for Aerial and Space Positioning and Navigation

    Yu, Kegen / Dunik, Jindrich / Braasch, Michael S. et al. | IEEE | 2024

    Freier Zugriff


    Special section guest editorial

    Rogowitz, B. E. / Pappas, T. N. / Allebach, J. | British Library Online Contents | 2001


    Special section guest editorial

    Yeung, M. M. / Li, C.-S. / Lienhart, R. et al. | British Library Online Contents | 2001


    Special section guest editorial

    Erbacher, R. F. / Pang, A. | British Library Online Contents | 2000