The paper proposes a method to extract nonlinear discriminant features from given input measurements by using outputs of a multilayer perceptron (MLP). Linear discriminant analysis (LDA) is one of the best known methods to construct linear features which are suitable for class discrimination. Otsu (1975, 1981) showed that LDA can be extended to nonlinear if one can estimate Bayesian a posteriori probabilities. Previously, MLPs have been successfully applied to many kinds of pattern recognition problems. It is also regarded that outputs of MLPs trained for pattern classification approximate Bayesian a posteriori probabilities. Thus one can construct nonlinear discriminant features that maximize the discriminant criterion by using outputs of MLPs as estimates of Bayesian a posteriori probabilities.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Nonlinear discriminant features constructed by using outputs of multilayer perceptron


    Beteiligte:
    Kurita, T. (Autor:in) / Asoh, H. (Autor:in) / Otsu, N. (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    317305 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Nonlinear Discriminant Features Constructed by Using Outputs of Multilayer Perception

    Kurita, T. / Asoh, H. / Otsu, N. et al. | British Library Conference Proceedings | 1994


    Modular, Multilayer Perceptron

    Cheng, Li-Jen / Liu, Tsuen-Hsi | NTRS | 1991


    SWMLP: Shared Weight Multilayer Perceptron for Car Trajectory Speed Prediction using Road Topographical Features

    Carneiro, Sarah Almeida / Chierchia, Giovanni / Charlety, Jean et al. | IEEE | 2023



    Memristor crossbar based implementation of a multilayer perceptron

    Yakopcic, Chris / Taha, Tarek M. | IEEE | 2017