Remote sensing applications require image registration as a pre-processing step before further progress. In this paper, we present a rigid search-space reducing, feature-based adaptive image registration scheme to put images in correspondence, without establishing explicit point correspondences. Our method estimates the registration parameters using a feature set, which is based on Principal Component Analysis (PCA). A unique aspect of the method is the incorporation of a learning process to learn the parameters from a training set of images, which is constructed incrementally. We illustrate the robustness of this approach using a number of remote sensing images and a variety of rotation angles. Mapping between the features and the transformation parameters is via a nearest-mean matching scheme. Hence correct orientation is determined within a predetermined error.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive image registration for remote sensing


    Beteiligte:
    Gokcen, I. (Autor:in) / Pineda, I.H. (Autor:in) / Buckles, B.P. (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    473849 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adaptive Image Registration for Remote Sensing

    Gokcen, I. / Pineda, I. H. / Buckles, B. P. | British Library Conference Proceedings | 2003


    Image Registration for Remote Sensing

    Le Moigne, Jacqueline / Netanyahu, Nathan S. / Eastman, Roger D. | NTRS | 2012


    Image Registration for Remote Sensing

    J. Le Moigne / N. S. Netanyahu / R. D. Eastman | NTIS | 2012


    Fast remote sensing image registration algorithm

    Yue, T. / Yongmei, Z. / Bo, L. | British Library Online Contents | 2008


    Remote Sensing Image Registration Based on the HEIV Model

    Chen, Chen / Zhou, Yongjun / Li, Yuanxiang et al. | British Library Conference Proceedings | 2019