This work presents a distributed velocity planning strategy for multi-vehicle cooperation along pre-defined paths. Specifically, we consider a class of tasks where multiple vehicles must navigate given paths with conflict zones (e.g., merging and crossing) as fast as possible without any inner collisions. Given the paths, the biggest challenge for velocity planning is to create collision avoidance constraints without complete spatio-temporal information. To overcome the challenge, a scheme is proposed to project collision-related information from coordinate space to 1-D space with geometry-based safety guarantees. To enhance the ability to deal with medium-and large-scale problems, the alternating direction method of multipliers (ADMM) is introduced. Unlike classic ideas of applying distributed optimization, we formulate ADMM in a semi-centralized, semi-parallel fashion instead of a fully distributed fashion. In this way, a trade-off between overall performance and computational efficiency can be achieved. We evaluate our distributed planning strategy through simulations in multiple cases11Video of the results is available at https://youtu.be/GR6BwFTLErw. The results demonstrate that our method not only plans collision-free paths but also balances between overall performance and computational load.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Velocity Planning for Multi-Vehicle Systems via Distributed Optimization


    Beteiligte:
    Wang, Shuyuan (Autor:in) / Yu, Hang (Autor:in) / Yuan, Shuai (Autor:in) / Li, Shengbo Eben (Autor:in) / Ning, Zepeng (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    3003918 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Velocity Coordination of Multi-vehicle Systems via Distributed Neighbor Selection

    Shao, Haibin / Pan, Lulu / Xi, Yugeng et al. | IEEE | 2019


    Multi-vehicle cooperative trajectory planning parking optimization method

    CHEN LANPING / CHEN CHENGYUAN / XU LEI et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    HIERARCHICAL MULTI-OBJECTIVE OPTIMIZATION IN VEHICLE PATH PLANNING TREE SEARCH

    LORENZETTI JOSEPH / CALDWELL TIMOTHY / SUN KE et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    HIERARCHICAL MULTI-OBJECTIVE OPTIMIZATION IN VEHICLE PATH PLANNING TREE SEARCH

    LORENZETTI JOSEPH / CALDWELL TIMOTHY / SUN KE et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Multi-axis distributed driving intelligent vehicle path planning collision risk assessment method

    SUN FENGCHUN / LI ZHICHAO / LI JUNQIU et al. | Europäisches Patentamt | 2024

    Freier Zugriff