This paper presents a new method to automatically grade pathological prostate images according to Gleason grading system. Two feature extraction methods were proposed based on fractal dimension to analyze the variations of intensity and texture complexity in images. Each image can be classified into appropriate grade by using Bayes classifier and k-Nearest-Neighbor (k-NN) classifier, respectively. Leaving-One-Out approach was used to estimate the correct classification rates. Experimental results showed that 92.86% of accuracy can be achieved by using Bayes classifier and 89.01% of accuracy can be achieved by using k-NN classifier for a set of 182 pathological prostate images.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Classification for Pathological Prostate Images Based on Fractal Analysis


    Beteiligte:
    Lee, Cheng-Hsiung (Autor:in) / Huang, P. W. (Autor:in)


    Erscheinungsdatum :

    01.05.2008


    Format / Umfang :

    741600 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Classification of SAR Images Using a Fractal Approach

    Ewe, H. T. / Au, W. C. / Shin, R. T. et al. | British Library Conference Proceedings | 1993




    Analysis of Texture Images using Robust Fractal Description

    Avadhanam, N. / Mitra, S. / IEEE et al. | British Library Conference Proceedings | 1994