Within the trend of electrification and autonomous driving, the significance of high-quality crimp connectors is increasing as they establish the electrical connection for the energy and information flow in the automotive system. Whereas the manufacturing of crimp connectors is highly automated, the final quality assessment mainly comprises manual optical inspection tasks that are human labor-intensive and time-consuming. Addressing this gap, a computer vision system to automate the final inspection of crimp connectors is proposed and implemented. In this paper, the image processing chain and the deep learning-based model to reason over image data of crimp connectors with regard to different defect classes are outlined. The effectiveness of this system using a dataset collected in the laboratory environment is demonstrated.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep learning-based automated optical inspection system for crimp connections


    Beteiligte:
    Giang Nguyen, Huong (Autor:in) / Meiners, Moritz (Autor:in) / Schmidt, Lorenz (Autor:in) / Franke, Jorg (Autor:in)


    Erscheinungsdatum :

    08.12.2020


    Format / Umfang :

    1091270 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Ultrasound for Crimp Inspection

    Maalouf, Khalil / Stull, David / Nicholas, Keith | British Library Conference Proceedings | 2016


    Ultrasound for Crimp Inspection

    Stull, David / Nicholas, Keith / Maalouf, Khalil | SAE Technical Papers | 2016


    Automated vision system for crankshaft inspection using deep learning approaches

    Tout, Karim / Bouabdellah, Mohamed / Cudel, Christophe et al. | British Library Conference Proceedings | 2019


    Electrical Crimp Consolidation

    Sarraf, David B. / Schmidt, Helge | British Library Conference Proceedings | 2017