This paper presents a novel solution of vehicle occlusion and 3D measurement for traffic monitoring by data fusion from multiple stationary cameras. Comparing with single camera based conventional methods in traffic monitoring, our approach fuses video data from different viewpoints into a common probability fusion map (PFM) and extracts targets. The proposed PFM concept is efficient to handle and fuse data in order to estimate the probability of vehicle appearance, which is verified to be more reliable than single camera solution by real outdoor experiments. An AMF based shadowing modeling algorithm is also proposed in this paper in order to remove shadows on the road area and extract the proper vehicle regions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    3D Vehicle Extraction and Tracking from Multiple Viewpoints for Traffic Monitoring by using Probability Fusion Map


    Beteiligte:
    Hu, Zhencheng (Autor:in) / Wang, Chenhao (Autor:in) / Uchimura, Keiichi (Autor:in)


    Erscheinungsdatum :

    01.09.2007


    Format / Umfang :

    1032755 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Intelligent video traffic monitoring system based on multiple viewpoints

    WANG YAO / CHEN YARU / JIAO MENG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Recognizing Action Events from Multiple Viewpoints

    Syeda-Mahmood, T. / Vasilescu, A. / Sethi, S. et al. | British Library Conference Proceedings | 2001


    Recognizing action events from multiple viewpoints

    Syeda-Mahmood, T. / Vasilescu, A. / Sethi, S. | IEEE | 2001


    Traffic Parameter Extraction using Video-based Vehicle Tracking

    Jung, Y. K. / Ho, Y. S. / IEEE et al. | British Library Conference Proceedings | 1999