As Uncrewed Aircraft Systems (UAS) become more ubiquitous in urban airspace around the world, the need for reliable navigation and de-confliction technologies becomes paramount. In this paper, the authors improve the popular Deep Reinforcement Learning (RL) methods of Twin Delayed DDPG (TD3) and Proximal Policy Optimization (PPO) and propose two new integrated algorithms for de-confliction with single and multiple intruder UASs in different cases of fixed and variable altitudes. Based on the Actor-Critic method, new RL systems and reward functions are designed that enhance the training efficiency of the navigating UAS agent for the considered environment models. The simulation results show the capability of the trained agent to successfully navigate in a complex environment amid fixed and velocity obstacles. This research contributes to the development of autonomous navigation for UAS in urban airspace.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Intelligent Method for UAV Navigation and De-confliction --Powered by Multi-Agent Reinforcement Learning


    Beteiligte:
    Xia, Bingze (Autor:in) / Mantegh, Iraj (Autor:in) / Xie, Wen-Fang (Autor:in)


    Erscheinungsdatum :

    06.06.2023


    Format / Umfang :

    2309504 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Multi-Agent Navigation with Reinforcement Learning Enhanced Information Seeking

    Zhang, Siwei / Guerra, Anna / Guidi, Francesco et al. | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2022

    Freier Zugriff

    Intelligent Traffic Management System using Multi-Agent Reinforcement Learning

    Shaheen, Dalaali / Paulraj, Getzi Jeba Leelipushpam / Jebadurai, Immanuel Johnraja et al. | IEEE | 2025