This article explores the adaptive robust optimal attitude control issue of multiple quadrotor systems with unknown external disturbances and actuator faults. To achieve the desired tracking performance, we introduce the optimal control theory to improve control accuracy and energy utilization efficiency. Considering the unavailability of disturbance information and the bias signals caused by actuator failures in the system model, we design an integral reinforcement learning control algorithm that eliminates the requirement for system dynamics. Unlike more complex structures such as identify-actor-critic and actor-critic, we employ a critic-only neural network (NN) to evaluate system performance and execute control actions, thereby significantly reducing the computational burden. By combining experience replay and gradient descent techniques, we derive the update laws of NN weights, eliminating the need for persistent excitation condition. Finally, the simulation experiments demonstrated the practicability of this control strategy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Robust Attitude Control for Multiple Quadrotor Systems via Integral Reinforcement Learning


    Beteiligte:
    Zhou, Yuhao (Autor:in) / Luo, Biao (Autor:in) / Xu, Xiaodong (Autor:in) / Yang, Chunhua (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.08.2025


    Format / Umfang :

    9085896 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Attitude Control Based on Reinforcement Learning for Quadrotor

    Wang, Yao / Zhang, Weiping / Mou, Jiawang et al. | TIBKAT | 2022


    Attitude Control Based on Reinforcement Learning for Quadrotor

    Wang, Yao / Zhang, Weiping / Mou, Jiawang et al. | British Library Conference Proceedings | 2022


    Attitude Control Based on Reinforcement Learning for Quadrotor

    Wang, Yao / Zhang, Weiping / Mou, Jiawang et al. | Springer Verlag | 2022