This paper proposes a 3D Structural Convolutional Network (3D-SCN) for 3D convolutional encoding layers in LiDAR-based self-driving applications. The 3D-SCN leverages novel convolutional kernels that incorporate cosine similarity and Euclidean distance metrics to adeptly capture geometric characteristics from LiDAR datasets. This design is specifically crafted to maintain feature invariance amidst the disparities in regional data and sensor-specific channel variations. Experiment conducted on various LiDAR-based point cloud datasets demonstrate that the proposed 3D-SCN (3D Structural Convolutional Network) shows consistent performance across different LiDAR sensor specifications, even when trained on a specific dataset. To further validate its effectiveness and enhance the diversity of the LiDAR domain, we introduce the PanKyo dataset, which includes a comprehensive set of samples with 32, 64, and 128 channel domain differences. The results presented underscore the efficacy of the 3D-SCN in enhancing performance and robustness for LiDAR-based 3D recognition tasks in the context of self-driving applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Domain-Invariant 3D Structural Convolutional Network for Autonomous Driving Point Cloud Dataset


    Beteiligte:
    Lee, Rohee (Autor:in) / Ryoo, Seonghoon (Autor:in) / Lee, Soomok (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    2137578 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Self-Supervised Point Cloud Prediction for Autonomous Driving

    Du, Ronghua / Feng, Rongying / Gao, Kai et al. | IEEE | 2024


    Point Cloud Automatic Annotation Framework for Autonomous Driving

    Zhao, Chaoran / Peng, Bo / Azumi, Takuya | IEEE | 2024



    3D LIDAR point cloud based intersection recognition for autonomous driving

    Zhu, Quanwen / Chen, Long / Li, Qingquan et al. | IEEE | 2012