Magnetic resonance (MR) images often exhibit grayscale nonuniformities, caused by radio frequency (RF) coil design or acquisition sequences. Many algorithms to remove these nonuniformities have been proposed in the past decade. However, only minor attention has been given to the performance evaluation of existing methods. We derive a link between the estimation performance and underlying image structure. For a piecewise constant 1D signal model with equal size regions we demonstrate that the variance in estimation grows as M/sup 2/ , where M is the number of regions. In 2D case the growth becomes linear in M.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Performance evaluation of parametric bias field correction


    Beteiligte:
    Zagorodnov, V. (Autor:in) / Hansen, M.F. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    128603 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Performance Evaluation of Parametric Bias Field Correction

    Zagorodnov, V. / Hansen, M. F. | British Library Conference Proceedings | 2005


    Mosaic Image Segmentation with Bias Field Correction

    Yang, G. Z. / Myerson, S. / Chabat, F. C. et al. | British Library Conference Proceedings | 1999


    Automatic correction of bias field in magnetic resonance images

    Garza-Jinich, M. / Yanez, O. / Medina, V. et al. | IEEE | 1999


    Automatic Correction of Bias Field in Magnetic Resonance Images

    Garza-Jinich, M. / Medina, V. / Meer, P. et al. | British Library Conference Proceedings | 1999