Many research areas depend on group anomaly detection. The use of group anomaly detection can maintain and provide security and privacy to the data involved. This research attempts to solve the deficiency of the existing literature in outlier detection thus a novel hybrid framework to identify group anomaly detection from sequence data is proposed in this paper. It proposes two approaches for efficiently solving this problem: i) Hybrid Data Mining-based algorithm, consists of three main phases: first, the clustering algorithm is applied to derive the micro-clusters. Second, the $kNN$ algorithm is applied to each micro-cluster to calculate the candidates of the group’s outliers. Third, a pattern mining framework gets applied to the candidates of the group’s outliers as a pruning strategy, to generate the groups of outliers, and ii) a GPU-based approach is presented, which benefits from the massively GPU computing to boost the runtime of the hybrid data mining-based algorithm. Extensive experiments were conducted to show the advantages of different sequence databases of our proposed model. Results clearly show the efficiency of a GPU direction when directly compared to a sequential approach by reaching a speedup of 451. In addition, both approaches outperform the baseline methods for group detection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hybrid Group Anomaly Detection for Sequence Data: Application to Trajectory Data Analytics


    Beteiligte:


    Erscheinungsdatum :

    01.07.2022


    Format / Umfang :

    1920895 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Trajectory anomaly detection system and online trajectory anomaly detection method

    LI WENBIN / YAO DI / BI JINGPING | Europäisches Patentamt | 2024

    Freier Zugriff

    Research on UAV Data Anomaly Detection and Early Trajectory Warning Technology

    Qian, Yucheng / Zhao, Changwei / Huang, Weiming et al. | IEEE | 2025


    Efficient anomaly identification method on sparse trajectory data

    HAN XIAOLIN / HU XIURUI / MA CHENHAO et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Data-Driven Method for Detecting Flight Trajectory Deviation Anomaly

    Guo, Ziyi / Yin, Chang / Zeng, Weili et al. | AIAA | 2022


    Uncertain-Driven Analytics of Sequence Data in IoCV Environments

    Srivastava, Gautam / Lin, Jerry Chun-Wei / Jolfaei, Alireza et al. | IEEE | 2021