Geodesic active contours and graph cuts are two standard image segmentation techniques. We introduce a new segmentation method combining some of their benefits. Our main intuition is that any cut on a graph embedded in some continuous space can be interpreted as a contour (in 2D) or a surface (in 3D). We show how to build a grid graph and set its edge weights so that the cost of cuts is arbitrarily close to the length (area) of the corresponding contours (surfaces) for any anisotropic Riemannian metric. There are two interesting consequences of this technical result. First, graph cut algorithms can be used to find globally minimum geodesic contours (minimal surfaces in 3D) under arbitrary Riemannian metric for a given set of boundary conditions. Second, we show how to minimize metrication artifacts in existing graph-cut based methods in vision. Theoretically speaking, our work provides an interesting link between several branches of mathematics -differential geometry, integral geometry, and combinatorial optimization. The main technical problem is solved using Cauchy-Crofton formula from integral geometry.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Computing geodesics and minimal surfaces via graph cuts


    Beteiligte:
    Boykov, (Autor:in) / Kolmogorov, (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    509813 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Computing Geodesics and Minimal Surfaces via Graph Cuts

    Boykov, Y. / Kolmogorov, V. / IEEE | British Library Conference Proceedings | 2003



    Computing Visual Correspondence with Occlusions via Graph Cuts

    Kolmogorov, V. / Zabih, R. / IEEE | British Library Conference Proceedings | 2001



    Illumination-invariant tracking via graph cuts

    Freedman, D. / Turek, M.W. | IEEE | 2005