Herein, we develop a probabilistic methodology that enables the application of semi-supervised learning over a data architecture for knowledge representation. The data architecture, proposed here, is known as the Topological Hierarchal Decomposition (THD) and is derived from the use of topological compression to decompose data into subsets of increasing attribute similarity. We demonstrate the use of the THD and a probabilistic model for interrogating the THD for object detection in hyperspectral imagery. In particular, we develop a classifier to identify objects that share similar topological attributes with a training reference object.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Topological Learning for Semi-Supervised Anomaly Detection in Hyperspectral Imagery


    Beteiligte:
    Ramirez, Juan (Autor:in) / Armitage, Tristan (Autor:in) / Bihl, Trevor (Autor:in) / Kramer, Ryan (Autor:in)


    Erscheinungsdatum :

    01.07.2019


    Format / Umfang :

    9354790 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Semi-Supervised Machine Learning for Spacecraft Anomaly Detection & Diagnosis

    Ramachandran, Sowmya / Rosengarten, Maia / Belardi, Christian | IEEE | 2020


    Semi-Supervised Active Learning for Anomaly Detection in Aviation

    Memarzadeh, Milad / Matthews, Bryan / Templin, Thomas et al. | AIAA | 2023


    Applied low dimension linear manifold in hyperspectral imagery anomaly detection

    Li, Zhiyong / Wang, Liangliang / Zheng, Siyuan | SPIE | 2014


    Real-time causal processing of anomaly detection for hyperspectral imagery

    Shih-Yu Chen / Yulei Wang / Chao-Cheng Wu et al. | IEEE | 2014