The ability to reconfigure sensors dynamically between data collection operations (often termed active sensing) enables planning of sensing strategies. Each sensory action will improve knowledge of the environment; hence, each sensory action can be chosen utilizing a larger knowledge base than was available for previous actions. Consequently, a strategy consisting of a sequence of sensory actions can be planned in an adaptive manner, with data obtained from each action influencing the selection of subsequent actions. A system for identifying and localizing electrical components is described which is both adaptive and goal-directed. The mathematical framework of Bayesian decision theory is applied to the problem of selecting appropriate sensor actions in the presence of uncertain knowledge about the environment. This enables a consistent Bayesian framework for reasoning with uncertainty for the associated tasks of world modeling, sensor modeling, data fusion, and the selection of sensory actions.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Identifying and localizing electrical components: a case study of adaptive goal-directed sensing


    Beteiligte:
    Cameron, A. (Autor:in) / Wu, H.-L. (Autor:in)


    Erscheinungsdatum :

    01.01.1991


    Format / Umfang :

    494181 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    A goal-directed transportation planning model

    Morlok, Edward K. | Elsevier | 1969


    Goal-directed occupancy prediction for autonomous driving

    MARCHETTI-BOWICK MICOL / KANIARASU POORNIMA / HAYNES GALEN CLARK | Europäisches Patentamt | 2022

    Freier Zugriff

    Goal-directed scientific exploration using multiple rovers

    Estlin, T. A. / Castano, R. / Davies, A. et al. | NTRS | 2001