This paper presents a real-time vision-based vehicle's rear detection system using gradient based methods and Adaboost classification, for ACC applications. Our detection algorithm consists of two main steps: gradient driven hypothesis generation and appearance based hypothesis verification. In the hypothesis generation step, possible target locations are hypothesized. This step uses an adaptive range-dependant threshold and symmetry for gradient maxima localization. Appearance-based hypothesis validation verifies those hypothesis using AdaBoost for classification with illumination independent classifiers. The monocular system was tested under different traffic scenarios (e.g., simply structured highway, complex urban environments, varying lightening conditions), illustrating good performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle detection combining gradient analysis and AdaBoost classification


    Beteiligte:
    Khammari, A. (Autor:in) / Nashashibi, F. (Autor:in) / Abramson, Y. (Autor:in) / Laurgeau, C. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    482398 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicle Detection Combining Gradient Analysis and AdaBoost Classification

    Khammari, A. / Nashashibi, F. / Abramson, Y. et al. | British Library Conference Proceedings | 2005


    Exploiting Universum data in AdaBoost using gradient descent

    Xu, J. / Wu, Q. / Zhang, J. et al. | British Library Online Contents | 2014


    Traffic sign recognition using evolutionary Adaboost detection and forest-ECOC classification

    Baro, X. / Escalera, S. / Vitria, J. et al. | Tema Archiv | 2009