This work outlines an object detection system for usage within driver assistance systems. The system detects vehicles that are driving ahead of an equipped vehicle by means of vision and radar data fusion. The radar provides a first estimation of vehicle candidates with related lateral position and distance information. This information is used to define a region of interest (ROI) on an image obtained by a video camera. An AdaBoost object detection algorithm is utilized to scan the ROI and verify radar detection. Due to the visual detection more specific data of the vehicle's 3D position and width can be given. Moreover, the distance information provided by radar is used to choose optimal parameters during the visual detection process, e.g. properties of the scan window and parameters for fusing detections. In addition, this work will show that mutual information for haar-like feature selection can significantly increase detection rates using a new adaptive threshold.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Radar-Vision Fusion with an Application to Car-Following using an Improved AdaBoost Detection Algorithm


    Beteiligte:


    Erscheinungsdatum :

    01.09.2007


    Format / Umfang :

    2694286 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Radar-vision fusion for vehicle detection by means of improved Haar-like feature and AdaBoost approach

    Haselhoff, Anselm / Kummert, Anton / Schneider, Georg | Tema Archiv | 2007


    Radar-vision fusion for vehicle detection

    Bombini, Luca / Cerri, Pietro / Medici, Paolo et al. | Tema Archiv | 2006


    License plate detection based on improved Real Adaboost

    Xian Sheng, / Shutao Li, | IEEE | 2011


    Radar-Vision Fusion for Vehicle Detection

    Bombini, L. / Cerri, P. / Medici, P. et al. | British Library Conference Proceedings | 2006