Embedded systems are utilizing complex machine learning designs to solve difficult problems. It is a challenge to maximize the design efficiency with limitations to space, power, and heat generation. Random Number Generators (RNGs) must meet design constraints while also trying to be sufficiently random. We investigate the randomness of multiple RNGs and explore how degrees of randomness affect machine learning.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Verification of Random Number Generators for Embedded Machine Learning


    Beteiligte:


    Erscheinungsdatum :

    01.07.2018


    Format / Umfang :

    833202 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Pseudo-Random Number Generators

    Howell, L. W. / Rheinfurth, M. H. | NTRS | 1984


    FPGA based Hybrid Random Number Generators

    MahendraBabu, G.R. / Sridhar, K.P. / Baskar | IEEE | 2020



    Spaceborne Quantum Random Number Generators (QRNG) – Developments Towards a Product

    Lemke, Norbert M. K. / Rathje, Rainer / Pacher, Christoph et al. | TIBKAT | 2023