The Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are methods usually applied in the sensor fusion for Unmanned Aerial Vehicles due to its nonlinear navigation equations. This paper presents a comparison between the two filters considering the position, velocity and attitude of the vehicle and the IMU bias. The simulation experiments are designed according to performance evaluation techniques for two trajectories and different state vectors. The results show that the EKF has a lower computational cost than UKF, but the latter provides smaller errors for most of the states. It also show that the bias estimation influences positively the solution granted by the EKF.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Performance evaluation of the Extended Kalman Filter and Unscented Kalman Filter




    Erscheinungsdatum :

    01.06.2015


    Format / Umfang :

    2739805 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Unscented Kalman Filter

    Zarchan, Paul / Musoff, Howard | AIAA | 2015


    Unscented Schmidt–Kalman Filter Algorithm

    Stauch, Jason / Jah, Moriba | AIAA | 2015


    Unscented Schmidt-Kalman Filter Algorithm

    Jason Stauch | Online Contents | 2015


    Square-Root Unscented Schmidt–Kalman Filter

    Geeraert, Jeroen L. / McMahon, Jay W. | AIAA | 2018