All sampling representations of band-limited signals involve infinite sums. The truncation error associated with a given representation is defined as the difference between the signal and an approximating sum utilizing a finite number of terms. In this paper truncation error is expressed as a contour integral for Lagrange interpolation, general Hermite interpolation, the Shannon series (cardinal series), the Fogel derivative series, and multidimensional sampling expansions. Truncation error bounds are obtained under various constraints on the signal magnitude, spectral smoothness, and energy content.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    On Truncation Error Bounds for Sampling Representations of Band-Limited Signals


    Beteiligte:
    Yao, Kung (Autor:in) / Thomas, John B. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.11.1966


    Format / Umfang :

    2322312 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    On Frequency Weighted Balanced Truncation: Hankel Singular Values and Error Bounds

    Van Gestel, T. / De Moor, B. / Anderson, B. D. O. et al. | British Library Online Contents | 2001



    Reducing Truncation Error In Integer Processing

    Thomas, J. Brooks / Berner, Jeffrey B. / Graham, J. Scott | NTRS | 1995



    On Residual Estimate of Local Truncation Error

    Paudel, Abhiyan / Narayanarao, Balakrishnan | TIBKAT | 2023