Integrating Micro-Electro Mechanical System-Inertial Measurement Unit (MEMS-IMU) with Global Navigation Satellite System (GNSS) has been a widespread method to achieve cost-effective navigation solution for land vehicles. However, due to the significant and time-varying errors inherent to MEMS inertial sensors, the performance of Strapdown Inertial Navigation System (SINS) based on MEMS-IMU would degrade quickly during the frequent GNSS outages in urban environments. To improve the overall navigation accuracy, this paper proposed a combination of the following two approaches for the loosely coupled integrated system: (1) using the MEMS error coefficients derived from Allan variance analysis for Kalman filter (KF) tuning; and (2) providing additional measurements based on the knowledge of vehicle kinematic features for SINS error correction. In the second method, body velocity constraint and an improved zero velocity updates (ZUPT) method assisted by accelerometers are described. Road tests utilizing an automated vehicle in urban areas demonstrate the effectiveness of the proposed algorithms for reducing the rapid SINS drifts during GNSS outages.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A loosely coupled MEMS-SINS/GNSS integrated system for land vehicle navigation in urban areas


    Beteiligte:
    Meiling, Wang (Autor:in) / Guoqiang, Feng (Autor:in) / Huachao, Yu (Autor:in) / Yafeng, Li (Autor:in) / Yi, Yang (Autor:in) / Xuan, Xiao (Autor:in)


    Erscheinungsdatum :

    01.06.2017


    Format / Umfang :

    1306676 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Intelligent SINS/RDSS integrated algorithms for land vehicle navigation

    Xiaofeng He, / Xiaoping Hu, / Wenqi Wu, et al. | IEEE | 2009


    Loosely coupled GNSS and UWB with INS integration for indoor/outdoor pedestrian navigation

    Di Pietra V. / Dabove P. / Piras M. | BASE | 2020

    Freier Zugriff


    A novel interactive robust filter algorithm for GNSS/SINS integrated navigation

    Zhao, Bin / Zeng, Qinghua / Liu, Jianye et al. | SAGE Publications | 2023